Exact Duality in Semidefinite Programming Based on Elementary Reformulations
نویسندگان
چکیده
منابع مشابه
Exact Duality in Semidefinite Programming Based on Elementary Reformulations
In semidefinite programming (SDP), unlike in linear programming, Farkas’ lemma may fail to prove infeasibility. Here we obtain an exact, short certificate of infeasibility in SDP by an elementary approach: we reformulate any equality constrained semidefinite system using only elementary row operations, and rotations. When a system is infeasible, the reformulated system is trivially infeasible. ...
متن کاملAn Exact Duality Theory for Semidefinite Programming Based on Sums of Squares
Farkas’ lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A l...
متن کاملStrong Duality for Semidefinite Programming
It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interior-point methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity constraints are replaced by a s...
متن کاملLocal Duality of Nonlinear Semidefinite Programming
In a recent paper [8], Chan and Sun reported for semidefinite programming (SDP) that the primal/dual constraint nondegeneracy is equivalent to the dual/primal strong second order sufficient condition (SSOSC). This result is responsible for a number of important results in stability analysis of SDP. In this paper, we study duality of this type in nonlinear semidefinite programming (NSDP). We int...
متن کاملOn duality theory for non-convex semidefinite programming
In this paper, with the help of convex-like function, we discuss the duality theory for nonconvex semidefinite programming. Our contributions are: duality theory for the general nonconvex semidefinite programming when Slater’s condition holds; perfect duality for a special case of the nonconvex semidefinite programming for which Slater’s condition fails. We point out that the results of [2] can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2015
ISSN: 1052-6234,1095-7189
DOI: 10.1137/140972354